Atomic Layer Deposition Al2O3 Coatings Significantly Improve Thermal, Chemical, and Mechanical Stability of Anodic TiO2 Nanotube Layers
نویسندگان
چکیده
We report on a very significant enhancement of the thermal, chemical, and mechanical stability of self-organized TiO2 nanotubes layers, provided by thin Al2O3 coatings of different thicknesses prepared by atomic layer deposition (ALD). TiO2 nanotube layers coated with Al2O3 coatings exhibit significantly improved thermal stability as illustrated by the preservation of the nanotubular structure upon annealing treatment at high temperatures (870 °C). In addition, a high anatase content is preserved in the nanotube layers against expectation of the total rutile conversion at such a high temperature. Hardness of the resulting nanotube layers is investigated by nanoindentation measurements and shows strongly improved values compared to uncoated counterparts. Finally, it is demonstrated that Al2O3 coatings guarantee unprecedented chemical stability of TiO2 nanotube layers in harsh environments of concentrated H3PO4 solutions.
منابع مشابه
ALD Al2O3-Coated TiO2 Nanotube Layers as Anodes for Lithium-Ion Batteries
The utilization of the anodic TiO2 nanotube layers, with uniform Al2O3 coatings of different thicknesses (prepared by atomic layer deposition, ALD), as the new electrode material for lithium-ion batteries (LIBs), is reported herein. Electrodes with very thin Al2O3 coatings (∼1 nm) show a superior electrochemical performance for use in LIBs compared to that of the uncoated TiO2 nanotube layers. ...
متن کاملEnhanced Corrosion Resistance of PVD-CrN Coatings by ALD Sealing Layers
Multilayered hard coatings with a CrN matrix and an Al2O3, TiO2, or nanolaminate-Al2O3/TiO2 sealing layer were designed by a hybrid deposition process combined with physical vapor deposition (PVD) and atomic layer deposition (ALD). The strategy was to utilize ALD thin films as pinhole-free barriers to seal the intrinsic defects to protect the CrN matrix. The influences of the different sealing ...
متن کاملAtomic Layer Deposition for Coating of High Aspect Ratio TiO2 Nanotube Layers
We present an optimized approach for the deposition of Al2O3 (as a model secondary material) coating into high aspect ratio (≈180) anodic TiO2 nanotube layers using the atomic layer deposition (ALD) process. In order to study the influence of the diffusion of the Al2O3 precursors on the resulting coating thickness, ALD processes with different exposure times (i.e., 0.5, 2, 5, and 10 s) of the t...
متن کاملFabrication of Porous Al2O3 and TiO2 Thin film hybrid composite using Atomic Layer Deposition and Properties Study
Atomic layer deposition (ALD) has been used in advanced applications where thin layers of materials with precise thickness down to the nanometer scale are needed. Using anodic oxidation, we prepared the porous alumina. Anodic oxidation was carried out in 5 C 0.3M oxalic acid with anodizing voltages (~ 40 V) and two step anodization method. SEM shows that, these porous anodic oxides are well ali...
متن کاملAntireflection Coatings for Strongly Curved Glass Lenses by Atomic Layer Deposition
Antireflection (AR) coatings are indispensable in numerous optical applications and are increasingly demanded on highly curved optical components. In this work, optical thin films of SiO2, Al2O3, TiO2 and Ta2O5 were prepared by atomic layer deposition (ALD), which is based on self-limiting surface reactions leading to a uniform film thickness on arbitrarily shaped surfaces. Al2O3/TiO2/SiO2 and ...
متن کامل